Politik am Prüfstand: Frei- oder Kuhhandel?

Ein Beschluss darf in der Vorjahresbilanz der großen Heuler mit ökonomischem Beigeschmack nicht fehlen: im Frühjahr wurden die noch offenen Vertragsbestandteile des berühmten CETA beschlossen.

Um was geht’s?

CETA steht für ‚Comprehensive Economic and Trade Agreement‘ – zu Deutsch: umfassendes Wirtschafts- und Handelsabkommen. Wer es bloß als Handelsabkommen bezeichnet, verschweigt also die Hälfte. Vor allem, da genau jener Teil des Abkommens, der sich den klassischen Belangen des Handels widmet, bereits längst in Kraft getreten war. Dies liegt daran, dass die Handelspolitik alleinige Kompetenz der Europäischen Union ist. Für das Inkrafttreten des entsprechenden Teiles genügte deshalb der längst gefällte Beschluss im Europäischen Parlament. Den nationalen Parlamenten oblag es nur noch, über jene Teile des Abkommens zu entscheiden, die über die Handelspolitik hinaus gingen und somit auch in Bereiche nationaler Zuständigkeit fielen.

In diesen wirtschaftspolitischen Teilen wird sich zur Liberalisierung bekannt, also einer Marktöffnung aller nicht vorab explizit ausgenommenen Sektoren und Leistungen. Hierbei schreibt Annex I das tatsächlich bestehende Liberalisierungsniveau als Minimum fest. Dieses Minimum wird mit jeder hinzukommenden Liberalisierungsmaßnahme neu gesetzt, also schrittweise erhöht, was der Rücknahme von bisherigen und zukünftigen Liberalisierungsmaßnahmen entgegenwirkt. Von dieser Regel ausgenommen sind nur jene Sektoren und Leistungen, die in Annex II explizit angeführt werden. Es handelt sich also um das sogenannte Negativlistenprinzip: nur was explizit vorab als Ausnahme deklariert wurde, gilt als solche, alles andere wird vom Quasi-Gebot der Liberalisierung erfasst.

Hinzu kommen weitere Bekenntnisse wie jenes, Regulierungsunterschiede zu vermeiden und Standards anzugleichen oder zumindest als gleichwertig anzuerkennen. Während der Vertragstext explizit die fallspezifische Verweigerung eines dieser angestrebten Schritte erlaubt, könnte eine wiederholte Verweigerung als Verstoß gegen das völkerrechtlich geltende Frustrationsverbot interpretiert werden.

Noch heikler wird die Sache beim ebenfalls im Abkommen festgeschriebenen Investitionsschutz. Dieser soll vor entschädigungsloser Enteignung oder Diskriminierung schützen – also vor einem Tatbestand, der in entwickelten Rechtssystemen wie Kanada oder der Europäischen Union ohnehin verboten ist. Der Investitionsschutz geht allerdings über den der Allgemeinheit zukommenden Schutz des Eigentums hinaus und erzeugt somit eine Diskriminierung, wie er sie eigentlich vermeiden sollte. Auf Basis dieses besonderen Schutzes finden private Investoren die Möglichkeit, etwaige entgangene Gewinne vom Staat einzuklagen, wenn dieser implizit Schuld daran trägt – zum Beispiel durch neue Umweltauflagen oder Steuern.

Was hat das mit der Volkswirtschaftslehre zu tun?

Entsprechende Streitfälle werden zukünftig vor einem eigenen Investitionsgerichtshof geführt. In wie weit dessen Zusammensetzung den Vorwurf der Paralleljustiz entkräftigt, den sich bis dato zuständige private Schiedsgerichte eingehandelt hatten, ist wohl juristisch zu beurteilen. Die mit den Klagen verbundenen Risiken sind aber vor allem wirtschaftspolitischer Natur. Bei der Abwägung staatlicher Interventionen aufgrund neuer wissenschaftlicher Erkenntnisse oder unvorhergesehener Entwicklungen sind aufgrund des Abkommens nun auch potenzielle Kosten durch Klagen privater Investorinnen zu berücksichtigen.

Da selbst öffentliche Leistungen zur Daseinsvorsorge unabhängig ihres ökonomischen Charakters als nicht-tarifäre Handelshemmnisse geführt werden, lässt sich der Vorwurf einer ideologisch motivierten wirtschaftspolitischen Agenda im Abkommen nicht gänzlich vom Tisch wischen. Die Entscheidung über die Ausgestaltung eines Marktes bzw. seiner Regulierung sollte evidenzbasiert und situationsspezifisch gefällt werden, anhand ökonomischer Kriterien wie der Rivalität, der Ausschließbarkeit oder den externen Effekten eines Gutes. Die trockene Legistik im Vertragstext geht darauf ebenso wenig ein, wie auf die durch Technologie und Umwelt hervorgerufene Dynamik der wirtschaftlichen Entwicklung. Im Gegenteil, aufgrund der zuvor erwähnten Klauseln wird Liberalisierung teilweise zur Einbahnstraße erkoren, da die Reaktionsmöglichkeiten auf missglückte Privatisierungen beschränkt sind.

Was bleibt der Volkswirtschaft?

Klar, davon alleine wird die Welt nicht untergehen, und auch nicht die Volkswirtschaft. Diese hat durch den schon länger in Kraft getretene Teil des Abkommens zum Handel gerade erst ein – aufgrund der kleinen Größe Kanadas – überschaubares Wachstum erfahren. Gegen die längst von Statten gegangene Abschaffung tarifärer Handelshemmnisse wird sich wohl kaum ein Ökonom oder eine Politikerin verwehren. In wie weit durch die zusätzlichen Teile des Abkommens nun auch die Investitionstätigkeit zunimmt, bleibt abzuwarten.

Die Entscheidung über diese zusätzlichen Teile ist und bleibt daher wie vieles in der Wirtschaft und Wirtschaftspolitik eine Entscheidung unter Unsicherheit. Kritiker, Skeptiker und Pessimistinnen mögen in CETA gar einen Knebelvertrag sehen und potenzielle Klagen wie ein Damoklesschwert über jeder wirtschaftspolitischen Entscheidungen der Zukunft schweben sehen. Streng Marktgläubige und bedingungslose Optimistinnen hingegen werden in CETA bloß den gängigen Usus liberaler Spielregeln zur Absicherung gegen willkürliche politische Entscheidungen sehen. Für beide Sichtweisen finden sich Argumente und diese untermauernde Einzelfälle. Es gibt sie die Milliardenklagen von Konzernen, wie sie etwa Deutschland rund um den Atomausstieg kennengelernt hat. Doch entschieden selbst die bisher zuständigen privaten Schiedsgerichte nicht ständig und leichtfertig für die klagenden Konzerne. Und so wie die Notwendigkeit eines Investitionsschutzes bei entwickelten Rechtssystemen wie Kanada und der Europäischen Union in Frage gestellt werden kann, sind bei wirtschaftlich und politisch ähnlich entwickelten Volkswirtschaften wie Kanada und Europa auch Horrorszenarien von fallenden Standards in Arbeits-, Umwelt- oder Konsumentenschutz unwahrscheinlich.

Ein finales Urteil über die Notwendigkeit und den gesamtgesellschaftlichen Nutzen eines so umfassenden Abkommens basiert also zu einen großen Teil auf etwas, das der ökonomischen Disziplin nicht immer sonderlich gut glückt: Prognosen. Aktuelle Studien unterstreichen, dass es keine allgemeingültigen Prognosen zu Wirtschafts- und Handelsabkommen gibt. Was der optimale Grad an Handelsliberalisierung ist, ist von den miteinander verhandelnden Volkswirtschaften, deren Wirtschafts- und Bevölkerungsstruktur sowie vor allem von deren Präferenzen abhängig. Aus gutem Grund hat die Politik bereits aus negativen Erfahrungen und Kritik gelernt. Der Vertragstext von CETA und neuerer Abkommen verzichtet bereits auf einige umstrittene Liberalisierungsmaßnahmen früherer Vorlagen. Am Ende kommt es darauf an, wie und zu welchen Gunsten der Investitionsgerichtshof den Vertragstext in Zukunft auslegen wird. Die ökonomische Sorge wird damit am Ende zum juristischen Streitfall, wirtschaftspolitische Rechthaberei eine Frage noch zu klärenden Rechts.

 

Wie sehr profitiert Österreich vom Außenhandel?

Paul Krugman zeigt uns wie man Handelsgewinne mit einer einfachen Formel berechnen kann und wendet sie auf den “Brexit” an. Seiner Berechnung zufolge würde ein harter Brexit ca. 2% vom britischen BIP kosten. 

Die Formel kommt aus einem mittlerweile zum Standard gewordenen Modell bilateraler Handelsströme von Johnathan Eaton und Samuel Kortum. Dieses Modell ist im Prinzip eine  Verallgemeinerung des „Ricardianischen Modells“, das wir alle im ersten Jahr VWL-Studium gelernt haben (wir erinnern uns: England tauscht Tuch gegen Wein aus Portugal,…), nur eben mit unendlich vielen Gütern und beliebig vielen Ländern. Die Formel setzt das Pro-Kopf-Realeinkommen einer Volkswirtschaft w in Beziehung zum Inlandsanteil seiner Gesamtausgaben („home share“) h:

w = a*h^(-b),

wobei die Konstante a die allgemeine Arbeitsproduktivität der Landes misst (je größer a, desto größer der „absolute Vorteil“ eines Landes) und der Parameter b die Streuung der Arbeitsproduktivität über die Länder hinweg bestimmt (je größer b desto stärker ausgeprägt sind die „komparativen Vorteile“ jedes Landes). Hier klicken, wer eine Herleitung sehen will. Eaton und Kortum und Krugman verwenden b=0,25 in ihren Berechnungen. Die Konstante a spielt für unsere Zwecke keine wesentlich Rolle.

Wie berechnet man den Inlandsanteil? Dazu müssen wir uns an die VGR-Identitäten erinnern. Das Bruttonationaleinkommen Y ist bekanntlich gleich den Gesamtausgaben eines Landes (Summe aus privatem und staatlichen Konsum und Investitionen) abzüglich der Netto-Exporte (Exporte X minus Importe M). Die Ausgaben auf inländische Güter erhält man indem man von den Gesamtausgaben die Importe abzieht oder wenn man vom Bruttonationaleinkommen die Brutto-Exporte abzieht. Das heißt wir können den Inlandsanteil wie folgt berechnen:

h = (Y-X)/(Y-X+M).

In einer geschlossenen Volkswirtschaft ist der Inlandsanteil gleich eins. Daraus folgt, dass das Pro-Kopf-Realeinkommen einer autarken Volkswirtschaft nur durch die allgemeinen Arbeitsproduktivität a bestimmt ist. Je offener die Volkswirtschaft, desto geringer der Inlandsanteil, desto größer sind die Handelsgewinne.

Nachstehende Grafik zeigt die Resultate meiner Berechnungen für die Österreich von 1995 bis 2017 (Daten von Eurostat). Warum 1995? Weil das das Jahr war, in dem Österreich zur EU beigetreten ist. Wie man sieht entfielen bei EU-Beitritt noch fast 2/3 der österreichischen Gesamtausgaben auf heimische Güter. Heute liegt der Anteil bei unter 50%.

Bildschirmfoto 2018-12-06 um 17.51.28

Laut unserer Formel stiegen dementsprechend die Handelsgewinne seit dem EU-Beitritt von ca. 11% auf über 20% des Pro-Kopf-Realeinkommens. Sprich: würde Österreich wieder zur Handelspolitik von vor 1995 zurückkehren, wären wir um rund 9% ärmer. Würde Österreich alle Handelsbeziehungen kappen und von nun an in perfekter Isolation leben, müssten wir auf 1/5 unseres Einkommens verzichten. Oder in absoluten Zahlen ausgedrückt: Jeder Österreicher ist im Schnitt um 8.400 Euro pro Jahr reicher durch den Außenhandel. Eine Rückkehr zu Vor-EU-Handelsverhältnissen würde jeden Österreicher ca. 3.800 Euro pro Jahr kosten.

Wie immer bei diesen Rechenspielchen sind die konkreten Zahlen mit viel Vorsicht zu genießen. Sie hängen stark von vereinfachenden Annahmen ab und bieten daher nur einen ersten groben Anhaltspunkt. Wie dem auch sei, ich mag solche Pi-mal-Daumen-Rechnungen einfach!

Intro to Econ: Third Lecture – Efficiency, Fairness, Trade, and a bit about Free Trade Agreements

We will come back to the idea that people typically like more money over less (all else equal) – see last lecture, but let me now turn to another important idea, trade. Let me first talk about trade without money. I will (re)introduce money into trade a little bit later, but one key idea behind trade does not require money.

I here talk about (bilateral) trade and more general exchange, efficiency, and fairness. I do this in the context of a kid’s birthday party and follow, to some extent, chapter 3 of Ariel Rubinstein’s much more general treatment in “Economic Fables”.

I don’t know how this is done in other areas in the world, but in Graz there seem to be certain specific norms that one should follow when you host a kid’s birthday party. You invite roughly as many children as your child’s age in years. Children bring presents, but each child also goes home from the party with some little bag of goodies. As concerned parents we do not want to give the children too many sweets so we give them little presents such as little Lego or Playmobil figures or a car or something like this. We did this twice this year (we have two kids) and in both cases the first thing that happens after the kids finally find the treasure (there is often a sort of treasure hunt) is this: the kids start to trade. So, what is going on when kids are trading their presents?

To fix ideas consider a particular example with three kids. I call them Eva, Fritz, and Maria. They each receive one figure, Eva a pirate, Franz a nurse, and Maria a ghost. Assume that we are able to see inside their heads and see the kids’ preferences over these three figures. These are given in the following table.

 \begin{tabular}{c|ccc} & Eva & Franz & Maria \\ \hline present: & pirate & nurse & ghost \\ \hline 1 & nurse & pirate & pirate \\ 2 & ghost & ghost & nurse \\ 3 & pirate & nurse & ghost \\ \end{tabular}

 

Please take a moment or two to think about which of these kids, in your opinion, would be interested in trading their presents.

Are you done? The answer is that actually every pair of them would potentially be happy to trade presents. Let me run through all possible sequences of trades.

Suppose first that Eva and Franz trade. This leads to Eva receiving her favorite figure, the nurse, and Franz receiving his favorite figure, the pirate. Maria is still left with her ghost. So what has happened? This is what we call a Pareto improvement. A Pareto improvement is a change in allocation that keeps everyone at least as happy as before and makes at least one person strictly happier.

A quick aside: The term Pareto improvement is named after a certain Vilfredo Pareto. He is no longer with us. You can google his name if you like. My policy with names in this course is this: I try to avoid them. I generally try to avoid talking about famous dead people, because I want you to judge concepts, ideas, and results for themselves. I don’t want you to “believe” in concepts, especially not just because the concept came from some famous dead person. This does not mean that you wouldn’t benefit from a course on the history of economic thought. One of the key things you learn in such a course, in my opinion, is to see how the times influence and constrain economic thinking. This allows you to appreciate how certain older “models” need to be adapted to fit modern times, but also how certain, perhaps forgotten, ideas from older “models” might still have relevance today.

But back to Pareto improvements. Is there another possibility of trade after Eva and Franz trade? My answer would be no. Why? Because Eva and Franz already have the thing they like best and so why would they trade? So I would say that there are no more trades after the first one. When I asked students in the class, they said that they thought that Franz and Maria could possibly trade. This would give Maria her most preferred figure, the pirate, and would give Franz his second most preferred figure, the ghost. When I asked them why they think Franz would be willing to give up his pirate for the ghost, students said that maybe he likes Maria. This is an interesting point. This means that my depiction of preferences in the above table is not complete (or I do not take into account that as they are friends, Franz and Maria will probably meet again and can follow an unwritten contract between them in which it says that Franz gives Maria her favorite toy and in return Maria will give Franz some smarties in school the next day). If I wanted to capture a situation in which Franz cares about what figure Maria gets, I would have to change Franz’s preferences. His preferences would then not only be over which figure he gets himself but over the allocation of figures for him and Maria. This is not impossible to do and of course quite relevant in some cases. We would then say that allocating figures has externalities. One child getting a better figure according to her own preferences affects some other child’s preferences directly. This is a situation we come back to later in the course and will be the beginning of a discussion of “market failures”.

Assuming for now that the three children only care about what figure they themselves get, we have that after Eva and Franz trade there are no more trades.

What about the other trading options? For instance, Eva and Maria could trade, giving Eva the ghost and Maria the pirate, and then Eva could trade her ghost with Franz’s nurse. There are quite a few options of trade sequences. Any trade leads to a Pareto improvement and trading stops when there are no more possible Pareto improvements. Such a final situation is called Pareto efficient. We will encounter Pareto efficiency throughout the course. Whenever we say that a market under some assumptions is efficient we mean Pareto efficient. It is one of the basic and most helpful concepts in economics, but also one of the most misunderstood, I feel. It is my goal here to explain exactly what Pareto efficiency means and what it does not mean. One thing we already see in this example is that Pareto efficiency has little, if anything, to do with what one would call fairness. If, for instance, Eva and Franz trade, we get a Pareto efficient allocation but Maria is not very happy: she still has her worst figure, while the other two got their best figures. This doesn’t seem particularly fair. I will keep repeating this point that Pareto efficiency has nothing to do with fairness throughout the course in various different contexts.

By the way, the different sequences of (bilateral) trade in the example led to three different possible Pareto efficient allocations. In terms of the kids’ preference ranking these allocations can be expressed in this table:

 \begin{tabular}{ccc} Eva & Franz & Maria \\ \hline 1 & 1 & 3 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \\ \end{tabular}

Can we compare these further? You might think that the second allocation, the 1-2-1 allocation (meaning Eva gets her favorite figure, the nurse, Franz his second favorite, the ghost, and Maria her favorite, the pirate) is better than the other two. But this is not clear. It could be that Franz really would like the pirate much much more than the ghost, while both Eva and Maria don’t care that much about which figure they get. Of course it could also be that Franz cares little about all this, and Eva and Maria care a lot. So we cannot really so easily compare two Pareto efficient allocations. This will be more interesting but also more radical, when we introduce money into trade, which I do in the fourth lecture.

We can use this example to talk a little bit about free trade agreements. On this topic see also my blog post on the Wachau. Suppose that two of the three children, Franz and Maria, currently have a free trade agreement, but that Eva is not part of that agreement. Would both members of the “Franz-Maria free trade zone” like to add Eva into this zone? The answer here is at least “not necessarily” and actually probably “no”. Why not? In the Franz-Maria zone trade takes place between the two of them and Franz gets the ghost and Maria the nurse – both get their second favorite figures. Suppose that before they trade they wonder whether they should let Eva participate in their trading. Maria might well be against this, as she might be justifiably worried that Franz will then trade with Eva and not with her. After all, Eva has Franz’s favorite figure, the pirate, and Franz has Eva’s favorite figure, the nurse. But if Franz and Eva trade, Maria will be stuck with her least favorite, the ghost, whereas if she only had Franz to trade with she would at least get the preferred nurse. This strikes me as not so different from the current situation in the US in which the US steel producers (Maria) are not so happy about cheaper foreign steel imports (Eva). Of course steel users in the US (Franz) would prefer the cheaper foreign steel.

Let me make another point. Suppose that instead of Franz we have Fritz at the party and suppose that Eva’s present is the ghost, Fritz’ is the pirate, and Maria’s is the nurse. Eva and Maria have the same preferences as before but Fritz’ are different from Franz’. The situation is given in this table.

 \begin{tabular}{c|ccc} & Eva & Fritz & Maria \\ \hline present: & ghost & pirate & nurse \\ \hline 1 & nurse & ghost & pirate \\ 2 & ghost & pirate & nurse \\ 3 & pirate & nurse & ghost \\ \end{tabular} 

 

Now, who would like to trade? Please think about it for a moment. Actually no bilateral trade is feasible, but they could all trade together. You could imagine that the three children sit around a round table, Fritz to the right of Eva, Maria to the right of Fritz, and Eva to the right of Maria.  Then they could all trade by handing their respective present to the child sitting to the right of them. Everyone should agree to this and all are happier than before. So what am I saying with this example? Bilateral trade, no matter how often this is repeated, is not sufficient to lead to a Pareto efficient allocation. Sometimes more people need to get together at the same time. Later in the course, when I talk about money, we will see that this latter case is probably much more common.

What I have to say next is very much taken from chapter 3 of Ariel Rubinstein’s “Economic Fables” and is a nice way to demonstrate that Pareto efficiency cannot be everything that we want from a good system of allocating things to people who want things. Let me go back to the first example of Eva, Franz, and Maria. Suppose that we now hand out presents with some alternative allocation protocols. Suppose, for instance, that I – the father of the birthday child and party organizer – put the kids in some arbitrary (or perhaps not even arbitrary – perhaps showing favoritism) order and tell the kids that they are allowed to choose one and only one figure in the order that I put them in. Suppose the order is Eva, Franz, and then Maria. Then Eva takes the nurse, Franz is lucky and his favorite, the pirate, is still available and so he takes the pirate, while Maria, finally, saw both of her more preferred figures disappear before it is her turn to take the only remaining and her least favorite figure, the ghost. Note that this also leads to a Pareto efficient allocation. Now change the sequence and you will see that in every case you will end up with some Pareto efficient allocation. Actually it is very easy to see that this procedure always leads to a Pareto efficient allocation. But different sequences will lead to different allocations. This was also true in the trade example. Different initial allocations (the presents) lead to different final Pareto efficient allocations. Instead of me, the party organizer, determining this order, we could have used any other way to come up with some order. We could have let the kids fight, or do a race, or play a rock-scissors-paper tournament. There are many possibilities.

One potential problem with, say, kids fighting over things is that such a system does not provide particularly strong incentives for especially weak kids to acquire something in the first place, if they know that it will just be taken away from them again. How incentives matter in the design of economic systems is the topic of another lecture, though.

Here is the video (in German):